SPRING 2025: MATH 540 HOMEWORK

Homework 1. Clark: 2.1, 2.6, 2.5, 2.8, 2.9.

Homework 2. Clark, 7.3, 9.1, 9.2, 9.3. For 9.1, use the Euclidean algorithm and reverse substitution, not Blankiship's method.

Homework 3. Stein, 1.3, 1.8, 1.12 and the following problem: Suppose d, a, b are integers such that d = sa+tb, for some $s, t \in \mathbb{Z}$. Show that d = s'a + t'b if and only if s' = s + c and t' = t + d, where ca + db = 0.

Bonus Problem 1. In the number system $\mathbb{Z}[\sqrt{-5}] := \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$, show that if 3 = ab, with $a, b \in \mathbb{Z}[\sqrt{-5}]$, then either $a = \pm 1$ or $b = \pm 1$. (2 points)

Homework 4. (1.) Find the LCM of 1215 and 4725; (2.) Prove item (iii) from the LCM Proposition given in the lecture of January 30; (3.) Find the addition and multiplication tables for the remainders of 6 and the remainders of 7;

Homework 5. (1.) Prove the following cancellation property. If $ca \equiv cb \mod n$, and gcd(c,n) = 1, then $a \equiv b \mod n$. (2.) Find the elements of \mathbb{Z}_{100} that have multiplicative inverses. (3). Calculate $\phi(4), \phi(9), \phi(25), \phi(47)$, where $\phi(n)$ is the Euler totient function. Can you make a conjecture for the value of $\phi(p^2)$, if p is prime? You can check guess on the internet.

Homework 6. 1. Use the formulas given in class to calculate the following values of the Euler totient function: $\phi(36)$; $\phi(900)$; $\phi(2^43^25^511^2)$.

2. For the function $f : \mathbb{Z}_n \to \mathbb{Z}_a \times \mathbb{Z}_b$ defined in class, $f(\tilde{i}) = (\tilde{i}, \hat{i})$, where n = ab and gcd(a, b) = 1, write out all of the values of f to show that f is surjective, in the case $n = 15 = 3 \cdot 5$. Note that f establishes a one-to-one and onto correspondence between the elements of \mathbb{Z}_{15} that have a multiplicative inverse and the elements of $\mathbb{Z}_3 \times \mathbb{Z}_5$ that have a multiplicative inverse.

Homework 7. 1. Verify Euler's theorem for n = 7, n = 12 and all $1 \le a < n$ such that gcd(a, n) = 1. Then verify Euler's product formula for n = 48 and 1025,

2. Calculate: (a) 1056^{3247} modulo 9 and (b) The one's digit for 246^{135} .

3. Verify Gauss's theorem for n = 48, n = 124, n = 1000.

Homework 8. 1. Prove the following properties of the Euler totient function:

- (i) For a, b > 0 and $d := \gcd(a, b), \ \phi(ab) = \phi(a)\phi(b) \cdot \frac{d}{\phi(d)}$
- (ii) If $a \mid b$, then $\phi(a) \mid \phi(b)$.
- 2. Calculate $\tau(360)$ and $\sigma(360)$.

Homework 9. 1. For the set $\{(a,b) \mid a, b \in \mathbb{Z} \text{ and } b \neq 0\}$ discussed in class, with equivalence classes denoted [(a,b)] show that multiplication of equivalence classes given by $[(a,b)] \cdot [(c,d)] = [(ad+bc,bd)]$ is well defined.

2. Find all solutions to the linear congruences $6x \equiv 21 \mod 27$, both in \mathbb{Z}_{27} and in \mathbb{Z} .

Homework 10. Solve the following systems of congruences:

$x \equiv 1 \mod 5$	$2x \equiv 1 \mod 5$
$x \equiv 2 \mod 7$	$3x \equiv 2 \mod 7$
$x \equiv 3 \mod{11}$	$8x\equiv 3 \bmod 11$

$$x \equiv 2 \mod 11$$
$$x \equiv 4 \mod 12$$
$$x \equiv 6 \mod 13$$
$$x \equiv 5 \mod 17.$$

Homework 11. Stein, Section 2.6: 11, 13, 23, 25a, 27a.

Bonus Problem. For $n \ge 1$ give, with proof, a complete description of the complex numbers that are primitive *n*th roots of unity. (5 points)

HW 12. Work the following problems.

- (i) Find the roots of $f(x) = 3x^2 + 4x + 4 \mod 11$.
- (ii) Give an example of a quadratic polynomial in $\mathbb{Z}[x]$ that does not have a root mod 11.
- (iii) Show that a quadratic residue mod p cannot be a primitive root of 1 mod p (for p an odd prime).